[43] M. Zeng, Y. Du, Q. Jiang, N. Kempf, C. Wei, M. Bimrose, J. Chen, D. Kirsch, J. B. Martin, B. C. Wyatt, T. Hayashi, M. Saeidi-Javash, H. Sakaue, B. Anasori, L. Jin, M. D. McMurtrey, and Y. Zhang* High-throughput printing of combinatorial materials from aerosols, Nature, 2023

[42] M. Saeidi-Javash, K. Wang, M. Zeng, T. Luo, A. W. Dowling, and Y. Zhang, Machine Learning-Assisted Ultrafast Flash Sintering of High-Performance and Flexible Silver-Selenide Thermoelectric Devices, Energy & Environmental Science, 2022

[41] M Zeng, D Zavanelli, J Chen, M Saeidi-Javash, Y Du, S LeBlanc, G J Snyder, and Y Zhang, Printing thermoelectric inks toward next-generation energy and thermal devices, Chemical Society Reviews, 2022

[40] N Kempf, M Saeidi-Javash, H Xu, S Cheng, M Dubey, Y Wu, J Daw, J Li, Y Zhang, Thermoelectric power generation in the core of a nuclear reactor, Energy Conversion and Management, 2022

[39] Qiye Zheng, Divya Chalise, Mingxin Jia, Yuqiang Zeng, Minxiang Zeng, Mortaza Saeidi-Javash, Ali NM Tanvir, Gottlieb Uahengo Jr, Sumanjeet Kaur, Javier E Garay, Tengfei Luo, Yanliang Zhang, Ravi S Prasher, Chris Dames, Structured illumination with thermal imaging (SI-TI): A dynamically reconfigurable metrology for parallelized thermal transport characterization, Applied Physics Reviews 9 (2), 021411, 2022

[38] N Kempf, Y Zhang, Aerosol jet printed 3 omega sensors for thermal conductivity measurement, Review of Scientific Instruments 92 (10), 105008, 2021

[37] Y Du, R Wang, M Zeng, S Xu, M Saeidi-Javash, W Wu, Y Zhang, Hybrid Printing of Wearable Piezoelectric Sensors, Nano Energy, 2021

[36] M Zeng, H Xie, M Saeidi-Javash, ANM Tanvir, Y Du, J Chen, Mercouri G Kanatzidis, Y Zhang, Scalable nanomanufacturing of chalcogenide inks: a case study on thermoelectric V–VI nanoplates, Journal of Materials Chemistry A, 2021

[35] P Banerjee, J Huang, RB Ambade, E Jang, M Saeidi-Javash, Y Zhang, Deepa Madan,  Effect of Particle-Size Distribution and Pressure-Induced Densification on the Microstructure and Properties of Printable Thermoelectric Composites and High Energy Density …Nano Energy, 2021

[34] N Kempf, Y Zhang, A robust high sensitivity scanning thermal probe for simultaneous microscale thermal and thermoelectric property mapping, Applied Physics Letters 119 (11), 113902, 2021

[33] N Turan, M Saeidi-Javash, J Chen, M Zeng, Y Zhang, DB Go, Atmospheric Pressure and Ambient Temperature Plasma Jet Sintering of Aerosol Jet Printed Silver Nanoparticles, ACS Applied Materials & Interfaces, 2021

[32] Mortaza Saeidi-Javash, Yipu Du, Minxiang Zeng, Brian C Wyatt, Bowen Zhang, Nicholas Kempf, Babak Anasori, Yanliang Zhang, All-Printed MXene–Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing, ACS Applied Electronic Materials, 2021

[31] Courtney Hollar, Zhaoyang Lin, Madhusudan Kongara, Tony Varghese, Chinnathambi Karthik, Jesse Schimpf, Josh Eixenberger, Paul H Davis, Yaqiao Wu, Xiangfeng Duan, Yanliang Zhang, David Estrada, High‐Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates, Advanced Materials Technologies, 2020

[30] Gozde Basara, Mortaza Saeidi-Javash, Xiang Ren, Gokhan Bahcecioglu, Brian C Wyatt, Babak Anasori, Yanliang Zhang, Pinar Zorlutuna, Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering, Acta Biomaterialia, 2020

[29] Minxiang Zeng, Wenzheng Kuang, Irfan Khan, Dali Huang, Yipu Du, Mortaza Saeidi‐Javash, Lecheng Zhang, Zhengdong Cheng, Anthony J Hoffman, Yanliang Zhang, Colloidal Nanosurfactants for 3D Conformal Printing of 2D van der Waals Materials, Advanced Materials, 2020

[28] Samuel V Pedersen, Joseph R Croteau, Nicholas Kempf, Yanliang Zhang, Darryl P Butt, Brian J Jaques, Novel synthesis and processing effects on the figure of merit for NbCoSn, NbFeSb, and ZrNiSn based half-Heusler thermoelectrics, Journal of Solid State Chemistry, 2020

[27] Enzheng Shi, Shuang Cui, Nicholas Kempf, Qingfeng Xing, Thomas Chasapis, Huazhang Zhu, Zhe Li, Je-Hyeong Bahk, G Jeffrey Snyder, Yanliang Zhang, Renkun Chen, Yue Wu, Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites, Nano Research, 2019

[26] T. Varghese, C. Dun, N. Kempf, M. Saeidi-Javash, J. Richardson, D. Estrada, Y. Zhang, Flexible Thermoelectric Devices of Ultrahigh Power Factor by Scalable Printing and Interface Engineering, Advanced Functional Materials, 1905796, 2019. 

[25] M. Zeng, Y. Zhang, Colloidal Nanoparticle Inks for Printing Functional Devices: Emerging Trends and Future Prospects, Journal of Materials Chemistry A, 7, 23301 - 23336, 2019.

[24] C. Dun, W. Kuang, N. Kempf, M. Saeidi-Javash, D. Singh, and Y. Zhang, 3D Printing of Solution-Processable 2D Nanoplates and 1D Nanorods for Flexible Thermoelectrics with Ultrahigh Power Factor at Low-Medium Temperatures, Advanced Science, 1901788, 2019.

[23] M. Saeidijavash, W. Kuang, C. Dun, and Y. Zhang, Three-Dimensional Conformal Printing and Photonic Sintering of High-Performance Flexible Thermoelectric Films Using 2D Nanoplates, Advanced Functional Materials, 1901930, 2019.

[22] N. Taylor, W. Kuang, M. Saeidijavash, P. Kandlakunta, Y. Zhang, and L. Cao, Direct Printing of Metal Contacts on 4H-SiC for Radiation Detection, AIP Advances, 9, 095041, 2019.

[21] D. Black, L. Schoensee, J. Richardson, T. Vleisides, N. Kempf, D. Wang, Z. Ren, Y. Zhang, "Power Generation from Nanostructured Half-Heusler Thermoelectrics for Efficient and Robust Energy Harvesting", ACS Applied Energy Materials, 1 (11), 2018.

[20] R. Danaei, T. Varghese, M. Ahmadzadeh, J. McCloy, C. Hollar, MD Saleh, Y. Zhang, Rahul Panat, "Ultrafast Fabrication of Flexible Thermoelectric Films by Pulsed Light Sintering of Colloidal Nanoparticles", Advanced Engineering Materials, 1800800, 2018.

[19] Y. Zhang, "Thermoelectric Advances to Capture Waste Heat in Automobiles", ACS Energy Letters, 3, 1523−1524, 2018.

[18] N. Kempf, C. Karthik, B. J. Jaques, J. Gigax, L. Shao, D. Butt, R. He, D. Wang, Z. Ren, Y. Zhang, "Proton irradiation effect on thermoelectric properties of nanostructured n-Type half-Heusler Hf0.25Zr0.75NiSn0.99Sb0.01", Applied Physics Letters, 112, 243902, 2018.

[17] C. Han, G. Tan, T. Varghese, M. G. Kanatzidis, Y. Zhang, "High-Performance PbTe Thermoelectric Films by Scalable and Low-cost Printing" ACS Energy Letters, 3, 818−822, 2018.

[16] Z. Lin, C. Hollar, J. S. Kang, A. Yin, Y. Wang, H. Shiu, Y. Huang, Y. Hu, Y. Zhang, X. Duan, "A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film", Advanced Materials, 29, 1606662, 2017.

[15] K.R. Talley, S.C. Barron, N. Nguyen, W. Wong-Ng, J. Martin, Y. Zhang, and X. Song, "Thermoelectric properties of the LaCoO3-LaCrO3 system using a high-throughput combinatorial approach", Solid State Sciences, 64, 7, 2017.

[14] T. Varghese, C. Hollar, N. Kempf, C. Han, D. Estrada, R. J. Mehta, Y. Zhang, "High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals", Scientific Reports, 6, 33135, 2016.

[13] Z. Lin, A. Yin, J. Mao, Y. Xia, N. Kempf, Q. He, Y. Wang, C.-Y. Chen, Y. Zhang, V. Ozolins, Z. Ren, Y. Huang, X. Duan, "Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template". Science Advances, 2, e1600993 2016.

[12] N. Kempf, Y. Zhang, “Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement”. Energy Conversion and Management, 121, 224, 2016.

[11] L. Meda, M. Romzek, Y. Zhang, M. Cleary, "Development of a 1kW Exhaust Waste Heat Thermoelectric Generator", SAE International Journal of Commercial Vehicles, 9, 21-30, 2016.

[10] Y. Zhang, X. Wang, M. Cleary, L. Schoensee, N. Kempf, “High-Performance Nanostructured Thermoelectric Generators for Micro Combined Heat and Power Systems”, Applied Thermal Engineering, 96, 83, 2016.

[9] Y. Zhang, M. Cleary, X. Wang, N. Kempf, L. Schoensee, J. Yang, G. Joshi, L. Meda, “High-temperature and high-power- density nanostructured thermoelectric generator for automotive waste heat recovery”, Energy Conversion and Management, 105, 946, 2015.

[8] P. Jood, R. J Mehta, Y. Zhang, T. Borca-Tasciuc, S. Dou, David J. Singh, G. Ramanath, “Heavy element doping for enhancing thermoelectric properties of nanostructured zinc oxide”, RSC Advances, 4, 6363, 2014.

[7] Y. Zhang, R. J. Mehta, M. Belley, G. Ramanath, T. Borca-Tasciuc, “Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals”, Applied Physics Letters, 100, 193113, 2012.

[6] R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, G. Ramanath, “A new class of doped nanobulk high figure of merit thermoelectrics by scalable bottom-up assembly”, Nature Materials, 11, 233, 2012.

[5] R. J. Mehta, Y. Zhang, H. Zhu, D. S. Parker, M. Belley, D. J. Singh, R. Ramprasad, T. Borca-Tasciuc, G. Ramanath, “Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping”, Nano Letters, 12, 4523, 2012.

[4] Y. Zhang, E.E. Castillo, R. J. Mehta, G. Ramanath, T. Borca-Tasciuc, “A Noncontact Thermal Microprobe for Local Thermal Conductivity measurement”, Review of Scientific Instruments, 82, 024902, 2011.

[3] P. Jood, R. J Mehta, Y. Zhang, R. W. Siegel, T. Borca-Tasciuc, S. Dou, G. Ramanath, “Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties”, Nano Letters, 11, 4337, 2011.

[2] Y. Zhang, C. L. Hapenciuc, E. E. Castillo, R. J. Mehta, C. Karthik, G. Ramanath, T. Borca-Tasciuc, “A Microprobe Technique for Simultaneously measuring Thermal Conductivity and Seebeck Coefficient of Thin Films”, Applied Physics Letters, 96, 062107, 2010.

[1] Y. Zhang, Y. Chen, C. Gong, J. Yang, R. Qian, Y. Wang “Optimization of Superlattice Thermoelectric Materials and Microcoolers,” Journal of Microelectromechanical Systems, 16, 1113-1119, 2007.